
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no 
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 

1. REPORT DATE (DD-MM-YYYY) 

11-30-2009 
2. REPORT TYPE DATES COVERED (From - To) 

12/01/2007-08/31/2009 
4. TITLE AND SUBTITLE 

Flight Mechanics of Reversible Attachment Landing for Micro-Aerial Vehicles with 
Self-Decontaminating Surfaces 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

FA9550-08-i-,«e$" 000^ 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

T. M. Seigler 
5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of Kentucky Research Foundation 
201 Kinkead Hall 
Lexington, KY 40506-0001 
(859)257-9420 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

US Air Force Office of Scientific Research 
10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

AFRL-SR-AR-TR-10-0119 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Distribution A; Approved for Public Release 

13. SUPPLEMENTARY NOTES 20100316228 
14. ABSTRACT 

This work investigates the problem of landing on a vertical surface for flapping wing micro-aerial vehicles (MAV's) equipped with a 
self-decontaminating surface that allows attachment without a large force application. The analysis is based on time averaging theory which allows 
the wing motion and its resulting aerodynamic force to be characterized by parametric components of periodic functions. It is shown that a 
three-degree of freedom wing is required for the general maneuvering requirements of attachment landing. These kinematic variables are wing 
rotation, wing sweep, and variable frequency flapping speed. For the flight control problem, nonlinear methods of backstepping and and dynamic 
inversion are shown to be well-suited for achieving the necessary tracking commands. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT     b. ABSTRACT   c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

Adobe Professional 7.0 



Contents 

1 Introduction and Overview. 2 

2 Flight mechanics. 2 
2.1 Kinematics  2 

2.1.1 Main-body kinematics  3 
2.1.2 Wing kinematics  5 

2.2 Kinetics  6 
2.3 Aerodynamic Forces  8 

3 Actuation requirements. 10 
3.1 Aerodynamic forces in "slow" flight  10 
3.2 Method of averaging  11 
3.3 Average forces and moments  12 
3.4 Longitudinal dynamics  14 
3.5 Optimal landing trajectories  15 

4 Landing control. 16 
4.1 Control model  17 
4.2 Feedback linearization  18 
4.3 Backstepping  20 

5 Numerical example. 20 
5.1 Optimal landing trajectories  21 
5.2 Hovering flight  21 
5.3 Landing control  22 

6 Conclusions. 23 

7 References 24 

8 Appendix - Notation 26 

9 Figures. 27 



1 Introduction and Overview. 

This work investigates the attachment landing problem for flapping wing micro-aerial vehicles 
(MAV's). Landing is a critical operational component, necessary for conducting surveillance, and 
conserving/harvesting energy. Autonomous landing requirements for the MAV are quite different 
than for conventional aircraft as the MAV may be expected to identify its own set-down point 
while operating in highly constrained and unfamiliar surroundings. Recent advancements in surface 
adhesion technology offer to greatly enhance landing capabilities by allowing the MAV to attach to 
any nearby vertical surface, much like flying insects, and then detach with little effort. Researchers 
have recently attempted to design (Jagota and Bennisson, 2002; Glassmaker et al., 2004; Hui et 
al., 2004; Bhushan et al., 2006) and fabricate (Geim et al., 2003; Sitti, 2003; Sitti and Fearing, 
2003; Northen and Turner, 2005; Yurdumakan, et al., 2005) these types of adhesives, also called 
bio-inspired tapes. 

Biological studies have revealed that flying insects execute landing maneuvers ranging in com- 
plexity. For example, the honeybee utilizes a very simple control strategy when landing upright on 
a flat horizontal surface (Srinivasan et al., 2001). Alternatively, the housefly will land upside-down 
on a ceiling by extending its forward legs over its head, making contact, and then using momentum 
to rotate the remainder of its body 180-degrees to the ceiling (Borst, 1990). The particular landing 
strategy adopted by insects is dependent on various factors including inherent flight capabilities and 
"landing gear"; the honeybee is much more adept at hovering flight while the housefly has superior 
surface adhesion. The agility demonstrated by flying insects is difficult to mimic. The equations 
of motion for the flapping wing vehicle are naturally unstable (a key factor of agility) and contain 
substantial nonlinearities. The control problem has been recently investigated by relatively small 
number of researchers (Deng et al., 2006; Schenato, 2003; Schenato et al., 2003). The standard 
approach to control is based on time averaging theory (Sanders and Verhulst, 1985), which stems 
from the fact that the motion of the wings is substantially faster than the motion of the body to 
which they are attached. 

The problem addressed by this work that of vertical attachment landing where, generally stated, 
the objective is to control the vehicle such that its attachment surface can make contact with a 
vertical surface. It is assumed that the contact surface is situated on the underbelly of the vehicle, 
so that the landing requires a relatively large pitch angle. The two primary questions addressed 
here are: (1) what are the actuation requirements to produce the required landing maneuver?; and 
(2) how can this maneuver be controlled? 

The outline of this report is as follows. The equation of motion for a flapping wing vehicle are 
derived in Sec. 2, with the aim of generality. In Sec. 3, the longitudinal equations are considered 
with the objective of deriving general expressions for the actuation requirements of the vehicle. In 
this section, several critical assumptions as to the necessary wing degrees of freedom. Methods of 
nonlinear control are applied to the longitudinal dynamics in Sec. 4. Section 5 contains a numerical 
example of the theoretical development of the preceding sections, based on the planform properties 
of the bumblebee. Conclusions of this work are stated in Sec. 6. 

2 Flight mechanics. 

2.1    Kinematics. 

The body is divided into three components: the main body, and the two wings. The main body 
kinematics are referenced to an inertial reference frame, denoted &o, as required by the kinetic 
equations.   The motion of the wings are referenced to the main body reference frame, 8i\.   The 



notation followed throughout this section is explained in the Appendix (Sec. 6.1). 

2.1.1    Main-body kinematics. 

Let the position vector R locate a material point of the flight vehicle relative to an inertial reference 
frame; [R]Q is the ^-representation of this position vector. Let i?i locate the origin of a reference 
frame Si\ that is attached to some rigid portion of the main body and confined to rotate and 
translate with it. A material point is located relative to 3%\ by the vector R' so that 

R = R! + R'. (2.1) 

The £%o frame representation of this relation is 

[R]o = [fli]o + [-R'lo = [Hi]o + Coi[R'}u (2.2) 

and time derivative is 

Dt([R]o) = A([fli]o) - CbiMwi/oh + C01Dt([R']i). (2.3) 

The second time derivative is 

D«([H]0)   =   Dtt([Ri]o) -Coi[ui/0}imU^i/o\i-Coi[R'}*1Dt([LJl/o]i) 
+   2C0i[o;1/o]IA([-R']i)+Co1At([«1i). (2.4) 

Define v\ = CioA([-Ri]o) so that 

Dtt([Ri}o) = CoiA(«i) + Cbi[wi/o]i«i. (2.5) 

Also, let vi = Dt(vi), wi = [wi/o]i, wi = [wi/0]i, wi = A(«l), # = Wi, -R' = A([i*']i), and 
^' = [Jl'lJ, so that 

CioA([fl]o)   =   vi-&(*!+& (2.6) 

CwDtt([R]o)   =   vi+ Qivi - wxR'ivi - R'LJI - 2R'ui + R'. (2.7) 

These are the two expressions required to formulate the dynamic equations. They are expressed 
relative to a fixed body frame. However, since the aerodynamic forces are expressed relative to the 
direction of air flow, it is often convenient to express the dynamics relative to a frame that aligns 
with the air flow. 

The body velocity is Vi := dRi/dt, hence Dt([Ri]o) = Coi^i- F°r the circumstance that 
atmosphere is non-stationary (i.e., the presence of wind gusts and cross-flow), the wind velocity, 
denoted Vw, is necessary for an accurate prediction of the aerodynamic forces. To accommodate 
this situation the flight equations can be constructed in terms of the relative velocity 

V1/w = Vi - Vw, (2.8) 

which is the negative of the total wind velocity. The component Vw is not a known quantity and 
thus flight control designs are based on the assumption that it is negligible. The ^"o-representation 
of the previous equation is 

[Vi/w]o = [Vi]0 - [Vw]o = Dt{[Ri]0) - [Vw]0 = Cm - [VW]Q. 



If the disturbance term Vw is zero, then it is clear that v\ = CW\V\/W]Q = [V"i/,„]i. 
The relative wind-axis, denoted 3$\, is defined such that 

Cn[Vx/w}i = [VTl    0   0]T, (2-9) 

where [V^ji = CIQ[VI/W]Q, VTX := |[Vi/w]il> and C\\ is the basis transformation operator 2%\ —• 
St\. The relative motion of 8%\ and 8£\ results in the angular velocity vector IJJ\/\ which describe 
the relative angular motion of the reference frames. 

Taking the time derivative of the relative velocity vector, Coi[^i/u;]i results in 

Dt([V1/w]0) = Cbi[wi/0];[V1/W]i + CoiA([V1/w]i). (2.10) 

Since Dt{[Vl/w]0) = Dtt([Ri]o) - Dt([Vw]0), it follows that 

in + u>m - C10Dt{[Vw}0) = Dt([V1/w\i) + u>[V1/w}v (2.11) 

It is noted that 

A(Cn[V1/u,]i) = -[UI/I];AI[VI/«]I + Ci1A([V1/u,]1). (2.12) 

For no disturbance, v = [Vi^ji and vi = Dt([V i/w]i); hence 

Cuin = DtiCiiWiM + [*>I/I]\CH[V1/W]I. (2.13) 

Since Cil[V1/w]i = [VTl   0  0]T, it follows that Dt(Cn[V i/w]i) = [VT  0  0]T, and thus 

C-nV^iVr,   0 0]T + [urin]\\yTl  0 0]T. (2.14) 

The wind-axis transformation is then 

Ch(t>i+«i«i)   =   [Vfc  0 0]T + [wi/i]f[^  0 0]T + C'nQm 

=   [VTl  0 Of + Iwi/xlJI^  0 Of + CuwiCulVr,  0 0]T        (2.15) 
=   ii + ([WI/XJJ + CjjwCn) ui 

where the symbols uj and uj are evident. 
The basis transformation @o —* ^l is parameterized by the rotation by the 3-2-1 set of Euler 

angles ©i := \<f>\ 0\ tpi]T. The transformation matrix is 

C 10 

c(0i)c(Vi) c(0i)styi) -s(fli) 
-c(0i)a(^i) + s(0i)s(0i)c(</>i)     c(0!)c(^i) + s(0i)a(0i)s(V>i)     s(0i)c(0i) 
S(0I)S(T/>I) + c(0i)s(0i)c(Vi)     -a(0i)c(Vi) + c(0i)s(ei)s(Vi)   c(0i)c(0i) 

(2.16) 

The relationship between wi and ©i is then given by 

W] 

1   0     - sin 0X 
0  cos 0i  sin 0i cos ^i 
0 —sin 0i cos 0i cos 6\ 

©i- (2.17) 

The relative motion between ^i and 8$\ is quantified by the 3-2-1 set of Euler angles 71 = 0, c*i 
(angle of attack), and fi\ (sideslip angle), in which case the transformation matrix is 

C11 

cos (3i     sin fa    0 
— sin Pi   cos Pi   0 

0 0       1 

cosai     0   sinai 
0 1       0 

— sinai   0   cosc*i 
(2.18) 



Let Tj = [71 a\ Pi].   The components of the &\ representation of the relative angular velocity 
vector CJJ n are related to the relative angles by 

W| 1/1J1 

0 — sin fa 0 " 
0 — cos Pi 0 
0 0 1 

r,. (2.19) 

2.1.2    Wing kinematics. 

The wings, considered rigid, are attached to the main body. To quantify the motion of the right 
wing, two fixed reference frames are defined, ^2 and 3S3 (cf. Fig. 1.). The origin of ^2 is located 
at a wing-body connection point. The origin of 8%3 is located at the wings aerodynamic center 
of pressure. These two frames may be such that C23 = 0, but C23 ^ I; that is, there is some 
initial offset between the reference frames. The x<i and x3 axes are directed along the chord of the 
wing, the 2/2 and 2/3 axes are directed along the span toward the right, and the 22 and 23 axes are 
tangent to the chord and span directions (following the right-hand rule). Let V2 and V3 denote 
the velocity at the origin of ^2 and 8£3, respectively. For the left, wing the frames 8%\ and ^5 are 
defined in an identical manner. Generally, V* denotes the velocity of the origin of frame ^"j. 

The orthogonal transformation matrices C21 and C41 quantify the orientation of &2 and ^4, 
respectively, relative to St\. Again utilizing the 3-2-1 set of Euler angles, the transformation 
matrices are given by 

Cn = 
c(#)c(0{) J 

(2.20) 

for i = 2,4, where 

ti = $ + <!* 
o'i = o° + et 

Here <$, 9®, tp® are constants quantifying the initial offset. The angles fa and fa are called the 
flapping angles. The angles The angles 9<i and #3 are called the pronation angles. Finally, tp2 and 
tp3 are called the stroke angles. 

Let fa, 9%, ip3 denote the constant offset parameters of C32. The resulting transformation is 

c(93)c(i>3) 
C32 =      -c(fa)s(fa) + s{fa)s(93)c(fa) 

s{fa)s(rp3) + c(fa)s{93)c{xp3) 

Similarly, for C54: 

C(05)C(V>5) 
-c(05)s(05) + s(fa)s(95)c(ip5) 
s(fa)s(fa) + c(fa)s(95)c(ip5) 

c(93)s(fa) -s(93) 
c(fa)c(fa) + s(fa)s(93)s(^3)     s(fa)c(93) 
s(fa)c(fa) + c(fa)s(93)s(rj;3)   c(fa)c(93) 

(2.21) 

C54 
c(85)s(i>5) -s(95) 

c(fa)c(rp5) + s(fa)s(95)s{i;5)     s(fa)c(95)     .  (2.22) 
-s{fa)c{^) + c(fa)s(95)s(fa)   c{fa)c(9b) _ 

The relative rotation rate of the reference frames is quantified by the vectors a;2/i and W4/1. Let 
LOi/i = [u>j/i]j and 0j/! = [^ 9\ t/»^]T for i = 2,4 so that 

ijJi/i = H/l 

1        0 -sin^ 
0     cos <f>'t     sin (f>'t cos 9\ 
0   — sin 4>\   cos fy cos 9't 

©i/1 = ^t/l^i/1- (2.23) 



Define two additional reference frames &% and ^5, which indicate the relative orientation of the 
wind respect to the motion of the wings. The origins of these frames are coincident with ^3 and 

The wing velocity relative to the wind is given by 

i/w v  Wt 3,5 

where Vi/W is the velocity of ^ relative to the airflow. Define S%i (i = 3,5) such that 

Cii[Vi/w]i = [VTi 0 0]T,    i = 3,5 

(2.24) 

(2.25) 

where C33 and C55 are, respectively, the basis transformation operators ^3 —• $2, and ^5 —> .#5. 
These two transformations are parameterized by 3-2-1 Euler angles 7, = 0, a, and fa; the latter two 
angles are the wing angle of attack and sideslip angle. The orthonormal transformations matrices 
are 

C ,, 

— sin o/i cos fa   — sin a't sin fa     cos a't 

— sin fa cos Pi 0 
— cos a't cos (3     cos oii sin /J     — sin oti 

(2.26) 

where QJ = 7r/2 — a.  The relative rotations of &i and &i are quantified by the angular velocity 
vectors wg/3 and <A>g/5, with the relation 

'i/tJi 

sin/3. 0 " 
cos/3. 0 
0 1 

IV (2.27) 

where Tj = [7, Q, /3J]
T

, i = 3,5 . 

2.2    Kinetics. 

The equations of motion of an arbitrary nonpolar deformable body can be expressed in the general 
form 

F* - F - F' = 0, (2.28) 

where F* the generalized inertial force, F the generalized applied force, and F' the generalized 
constraint force. Explicitly, these terms are 

F* 

F 

F' 

f dDt([R']0) 

Jv 

-I 
"I 

dy 

dDt(\R']o) 
dy 

dDt(\R']o) 
dy 

At([R']o) dm 

[b]o dm 

[b]0 dm, 

(2.29) 

(2.30) 

(2.31) 

where ^b is an inertial frame, y is an array of coordinates chosen to specify the motion of the body, 
V is the spatial volume of the body, and b and b' are, respectively, the applied and constraint force 
per unit mass. Constraint forces do not typically show up in flight analysis since the aircraft is a 
free body. However, they can be used to determine the internal actuation forces due to specified 
motions (i.e., morphing) of the aircraft. 



When the main body is rigid, the kinematic parameters v\ and wi adequately quantify its motion. 
These kinematic parameters are regarded as quasi-cordinates since their integration does not yield 
any physically meaningful quantity. They are related to underlying kinematic quantities by 

vi   =   CioA([fli]o) 

wi    =    Gi6i. 

If the body is not rigid, additional coordinates are required to specify its motion. These additional 
coordinates can be treated in one of two ways: as additional states of the dynamical equations, or 
time-dependent extraneous inputs. For the analytical evaluation of complex structures, the latter 
approach is typically more useful. Mathematically, this amounts to the specification of program 
constraints, or servoconstraints, on certain kinematic parameters. 

Likewise, the translational and rotational velocity of the (assumed rigid) wings are sufficient to 
describe their motion. Additionally, there must be constraint equations that couple the wing to the 
main body. However, a significant simplification ensues when the wings are considered massless. 
In this case, the generalized inertial force is dependent solely on main body motion, and also the 
generalized constraint force goes to zero. Defining the coordinate array 

y=[v!   wx ]T, (2.32) 

the generalized inertial force can be written 

F*   =   rn(v + uv)-Su-tiSuj-2SL0 + S (2.33) 

F%    =   S (v + LOV) + JCJ + u) JUJ -f Ju + int-ppp' dm (2-34) 

where p = [R']i, F* = [Ff    F2*]T, and 

-i 
-L 
--L 

dm 

p dm 

pp dm 

are, respectively, the mass and the first and second moments of inertia. 
The matrix form (i.e., reference frame dependent) of the translational and rotational equations 

of a morphing aircraft can be expressed in the form (Seigler et al., 2007) 

mi) + muv — mrc^ — umrcv — 2mr~cu + re = T (2.35) 

mfcv + mfcuv + JUJ + CJJU + Ju> + int-ppp dm = M (2.36) 

where the components of the generalized applied force are F = [T M]T. The equations reduce to 
the standard rigid body flight equations when p = 0 for every material point and the center of mass 
is chosen as the reference origin, requiring that re = 0. For the non-rigid case, it is also possible 
to let the body-fixed axis move with the center of mass, in which case again re = 0. However, v 
would then be the velocity of the center of mass rather than a "fixed" point of the vehicle. For 
sufficiently large aircraft speeds, this difference will have only a small effect. Note also that the 
moments of inertia may become more complicated when the reference point is in relative motion. 



For the specified generalized velocities, the generalized applied forces are 

T   =    / [b]! dm =[f°]1 + [f»]1 (2.37) 
Jv 

M   =    [ p[b]i dm = [ma]i + [m9]i, (2.38) 
Jv 

which are divided into aerodynamic and gravitational components. The gravitational force is given 

by 

[f9]i=C10[0 0m5]r. (2.39) 

The moment due to gravity is 

K]i=C10fc[0 0m<7]r. (2.40) 

A direct conversion of the inertial force to the wind axis results in 

C-nFl   =   m {vi + ([vi/ili + CiiUiCtf) vi} - CuSu - CnCJSuj 

-   2C-nSu) + C-nS (2.41) 

and 

CuFS    =   Sivi + ilui^ + CuuCi^v^ + CnJuJ + Cufaj + fjw (2.42) 

+   Ciiintvpp dV 

Thus, ignoring the presence of wind gusts and cross-flow etc., the equations of motion in the wind- 
axis become 

mv\ + m (£>i/! + C\XUJCI\) V\ — mCufc^ — mC\iwrcw — 2mC\ifc^ 4- mC^rc — C\\T 

mrcv\ + mfc (<^i/i + Cii^Cn) "l + CHJUJ + C\i \QJ + J\ w + Cn / pp dV = CuM. 

2.3    Aerodynamic Forces 

The aerodynamic force applied to a wing is quantified by 

ff = /  tdSt,    i = 3,5 (2.43) 
Jsl 

where if is resultant aerodynamic force applied at the origin of 8%i, located at the center of pressure, 
t is the traction force per unit area, and 5, denotes the external area of the wing. The moment of 
the aerodynamic force, about the center of mass of the vehicle, is 

f = / Rin x t dS, (2.44) 
Js, 

m 
is, 

where Rj/C locates the origin of <#,, located at the center of pressure of the wing, with respect to 

The aerodynamic forces are considered to be functionally dependent on the instantaneous position 
of the wing and its velocity, both relative to the airflow. The aerodynamic force vector is divided 
into three components 

•5 • (2.45) 



which denote, respectively, the force on the main body, the right wing, and the left wing (the indices 
correspond to the reference frame where the resultant force is applied). Further denote 

[ff]l   =   [DiOL/ (2.46) 

[f3
a]2    =    [D30L3}T (2.47) 

[f5
a]3   =   [D40L5]T (2.48) 

where L and D are the lift and drag forces. If it is reasonable to assume that the aerodynamic 
forces on the main body are small compared to the wings, which is the case for "slow flight", it can 
be assumed that f„ is negligible. The functional form of the lift and drag is expressed as 

Li   =   Li(ai>di,l3iJhPi,Qi,V
Ti) (2.49) 

Dt   =   Di(ai,ai,pi,l3i,Pi,Qi,VTi). (2.50) 

for i = 3,5, where Pi and Qi is a component of [u>j/0]i = [Pi Q, Ri]T. 
Based on the published literature (Sane, 2003; Sane and Dickinson, 2001, 2002; Dickinson et al., 

1993) regarding the aerodynamics of flapping wings, the instantaneous aerodynamic forces applied 
to the wings are composed of three distinct phenomena: delayed stall, rotational lift, and wake 
capture. Delayed stall contributes a significant majority of the aerodynamic force. Rotational lift 
and wake capture are due to the pronation of the wing, which typically occurs at the peaks of 
the up and down-stroke. Subsequent development is based on the assumption that wake capture 
is the predominant force, while rotational lift and wake capture are negligible. The wake capture 
component is represented by a force located at the center of pressure of the wing that is dependent 
on the instantaneous angle of attack, a,, sideslip angle, $, and the relative wind velocity, Vp^ 

f? = t?(VTi,ai,pi). (2.51) 

The corresponding moment is then 

m? = fli/1xf?(Vrj,a<,A). 

Moreover, the force and moment are defined in the local wind axis; i.e., 

[m?h = [Jlj/ixij»(V7ilaj,A)h 

= [fl*/i]f[i?(^i,a«,A)]i. (2.52) 

In the 2$\ frame, the moment is 

K)i = CuCalRi/^W (VTl,ai, &)}.. (2.53) 

The position vector for the right wing is given by 

[#3/1)3 = [#2/1 ] 3 + [#3/2)s 

= C33C32C2l[.R2/l]l + C33C32 [#3/2)2 

where [#2/1)1 and [#3/2)2 are constants. Similarly, the position of the left wing is given by 

[#5/l]5 = C55C4l[-R4/l]l + C55C54[H5/4]4 (2.54) 

where [#4/1)1 and [#5/4)4 are constants. 



by 
The aerodynamic force is dependent on the velocities of the wings, V3 and V5, which are given 

[V3]3 = C31 [vi + wf ([fla/ili + Ci2[J*3/2]2)] + C^2ll]*2\Rv2h 
[Vb]b = Cm [Vl + W\ ([«4/l]l + Ci4[fl5/4]4)] + C54[w4/1]^[il5/4]4. 

(2.55) 

(2.56) 

When the main body is stationary, or else if the first term of the summation is much less than the 
second (i.e., the body velocity is slow relative to the wing velocity), this reduces to 

Wi}i = C32[u;2/1]2[.R3/2]2 

Wh]h = C,54[W4/i]4[H5/4]4. 

The velocities on which the aerodynamic force depends is now determined by 

VTi 

0 
0 

Cii[Vi}i,    i = 3,5. 

(2.57) 

(2.58) 

(2.59) 

Assuming that [Vj]j is known, this constitutes three equations with three unknowns: a», /%, VTV 

3    Actuation requirements. 

In this section are methods of determining the actuation requirements of attachment landing, 
without consideration of feedback control. Also introduced in this section are several key simplifying 
assumptions that are necessary to achieve analytically tractable results. 

3.1    Aerodynamic forces in "slow" flight. 

When the flight speed of the vehicle is "slow", it is reasonable to assume that v\ = u>i = 0; and 
thus Eq. (2.59) reduces to 

VT3 

0 
0 

It follows that 

C33C32 [k>2/l]2 [-^3/2)2 

sin Q3 cos /?3 sin 83 + cos a3 cos 6*3 
sin /?3 sin 83 

cos Q3 cos 03 sin #3 — sin a3 cos #3 
2/3/202- 

a3 = 83 + TT/2 

& = o 
VT3 = y3/202- 

Similarly, for the left wing 

a5 = 85 + n/2 

VTS = 2/5/404- 

According to Dickenson et. al (1999), the magnitude of the aerodynamic force can be accurately 
quantified by 

1 
Li(VTi,oti) = --pSiVf.dsinoti,    i = 3,5, (3.1) 
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where a* € [0,7r/2], and d is a positive constant (a value of 3.5 was determined empirically by 
Dickenson et. al, 1999). For "slow" flight, this results in 

L3(VT3,a3) = ^pS3(yy2j>2)
2C3 sin(03 + n/2) (3.2) 

Li(VTs,as) = -^pS5(y5/44>4)2C5sm(95 + TT/2). (3.3) 

Note that the lift is in the direction opposite of the wing motion. Expressed in the 8%\ frame, the 
aerodynamic forces are 

[fa]1=Cl3[f3a]3 + C15[f5a]5 
= C,i2C,23C,33[f3]3 + CwC^C^-f^ (3.4) 

The forces are dependent solely on the motion of the wings relative to the body. 
The aerodynamic moment due to the force is found by 

Kb = [H3/i]i[f3
a]i, (3-5) 

where 

[fl3/l]l = [-R2/l]l + Cl2[-R3/2]2. (3.6) 

3.2    Method of averaging. 

If the forces and moments produced by the wings occur periodically, and at a time scale much less 
than the motion of the vehicle body, the method of averaging can be used to produce a substantially 
simplified dynamic model. To show this, consider a periodic dynamical system of the form 

x = /(x,t), (3.7) 

where 

/(x,t) = /(x,i + T) 

for some constant T > 0. The corresponding average systems is 

Xavg(t) = ^[    fdt. (3.8) 

With a change of timescale, i.e., t = TT, Eq. (X) can be written 

^ = Tf(x,rT), (3.9) 

and thus 

^=T/(xav9). (3.10) 

It is desired to approximate the dynamical system of Eq. (3.13) with that of the corresponding 
averaged system, Eq. (3.14). The theory of averaging (see e.g., Sec. 10.4 of Khalil, 2002) states 
that if T is sufficiently small then x(t) — XaVg(t) = 0(T), where O denotes the order of the error. 
Hence, the difference between the output of a dynamical system and its averaged output is small 
when the periodic frequency is large. This result can be extended to the case where the system 
contains a state-dependent control input; i.e., x = /(x, u(x),t) (Schenato et. al., 2003). 

Since the wing motion of a flapping wing vehicle is generally much faster than the gross motion of 
the vehicle, the method of averaging is assumed applicable. All subsequent theoretical development 
is based on this assumption. Its validity will be examined in the numerical example of Sec. 5. 
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3.3    Average forces and moments. 

The wing motion is separated into the down-stroke and the up-stroke. The down-stroke is assumed 
to take place over a period T\ seconds, and the up-stroke over a period of T2 seconds; the total period 
is T = T\ + T2. During downstroke and upstroke, the fa traverses the same angular range, Aj,, at 
an assumed constant angular velocity. The downstroke and upstroke angular velocity magnitudes 

are denoted <j>2 and 0J? (both are positive valued). The periods, amplitude, and angular velocities 
are related by 

Let ffr denote the flapping frequency, which is related by 

4<t>2 

On the down stroke, let #3 = — TT/4 SO that a3 = 7r/4; it follows that 

C12C23C33 = C12 

The force on the down-stroke is thus 

1 

(3.11) 

(3.12) 

-1   0 0 
0     1 0 
0    0 -1 

[f3
a] 2pS3{y3/2<j)2rCsm(63 + TT/2) 

On the upstroke, let #3 = 7r/4 SO that a'3 = —IT/A; it follows that 

C12C23C33 = C12 

The force on the up-stroke is thus 

S<j>2Slp2 + C(fos02C^2 

-S({>2Clp2 + C(f>2S02Stp2 

c4>2C02 

(3.13) 

" 1 0 0 1 
0 1 0 
0 0 1 

[fall = ^p53(2/3/202)2Csin(e3 + 7r/2) 
S(j>2S1p2 + C(j)2S62Clp2 

-S4>2&p2 + c4>2S02Sll>2 
C4>2C02 

(3.14) 

Focusing on the down-stroke, the angle 1P2 is taken to be constant, and #2 = 0.  Thus, 02 is the 
only non-constant. 

The average force on the down-stroke is 

2Ti 

where 

SV>2 Jo ' S(^2 dt + sQ2<xl>2 Jo ' c& dt 

-apj /0
ri s(j>i dt + se2s^2 Jo1 c<t>i dt 

c02 JQ
1
 C4>\ dt 

Si 
Q = irpS3{y3/2<t>2) C. (3.15) 
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Similarly, the average up-stroke force is 

Q 

2T2 

stp2 Jx s4>2 dt + S62C1P2 ST 
C<

^
2
 dt 

-cip% /-£ s<fi% dt + s62sip% /£ c4>\ dt 

C02 JT C(j)2 dt 

The average force over a cycle is found by 

s</>2 folS(fo dt + s92cip2 Solcfa dt 

i$f dt + s92s^ 

c02 /0
Tl c<t>i dt 

_Q_ 

2T c4>2 h1 s<t>2 dt + s02s^ J0
Tl af>i dt + 

stp^ JT s(j)2 dt + s92ctp2 JT c<p2 dt 

-a\)\ j£ s<t>% dt + s92s^ fc c4>\ dt 

c92 JT c<t>2 dt 

Let [fa]i = {Tx-,Ty,Tz), and denote the averaged version of these forces {T%,Fy,T%)• Since the 
focus here is on the longitudinal equations, only T% and T* are of interest. Assuming ^ = ^2 > 
these average forces are 

; sin^/a) sin 92 cos ip2{<j>2 - <j>%) 
T 

^ = -^Sm(A<p/2)coSe2(^2-^) 

(3.16) 

(3.17) 

To determine the aerodynamic moment due to the force, assume that [H2/i]i = [#2/1 2/2/1 0]r> so 

that 

[Ry in 
Z2/1 ' -c4>2sip2 + s(p2s82ctp2 

2/2/1 + C(j)2Clp2 + S(f)2s92S1p2 
0 s<p2c92 

On the down-stroke the aerodynamic moment is 

V2 
K]i = - ^ps3(yy24>2yc 

2/3/2- 

C02 2/3/2 + C</>2 J/2/1 
^22/3/2 - x2/laj>2 

s4>2(stpiy2/1 +ctjj^x2/x) _ 
(3.18) 

and on the up-stroke the moment is 

K]i = -^pS3(y3/2<j>2)
2C 

«/>2 2/3/2 + C022/2/1 
5^2 2/3/2 - X2/lC<t>2 (3.19) 

-s<fo(sip%y2/i + c^s2/i) 

Let [nigji = (Ali, My, Mx), and denote the averaged version of these forces {M%, My, M%). For 
the longitudinal dynamics, only My is required, which is 

Mv = % (x2/i s•(A<t>/2) - 2/3/2^sin^2) cos92{^ - <$). (3.20) 

The average forces and moments thus far calculated are for a single wing. When the wing motion 
is symmetric, these forces and moments are simply doubled in magnitude. That is, for symmetric 
wing motion, the total average forces and moments are 

2<7 

Ta = 

T 
2« 

sin(^/2)sin6»2Cos^2(</>2 - <t>l) 

sm{A^/2)cos92{,4>2-4>2) 

2g 
Ma

y = — (x2/i sin(^/2) - 2/3/2^sinip2) cos02(<#! ~ 02*)- 

(3.21) 

(3.22) 

(3.23) 
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or 

Ta
x = -2qU sin(^0/2) sin 62 cos t/>2(</>2 - $) (3.24) 

JT« = _2g/0sin(^/2)cos02($ - fl) (3.25) 

Ma
y = 2qf4> (x2/1 sin(^/2) - yyiA+smifo) cos02(<^ - «^). (3.26) 

The available control inputs are: 82, ^2, </>2> and 0J>- 

3.4    Longitudinal dynamics. 

Assuming the main body is rigid, then with the standard longitudinal assumptions (V = P = R = 
0) (Stevens and Lewis, 2003) the longitudinal dynamics are 

mil = -WQ-mgsin6i + Fx (3.27) 

mW = UQ + mg cos 6>i + Tz (3.28) 

IyQ = My. (3.29) 

The average dynamics are achieved by replacing {J-X,FZ, My) with their cyclic averages {T%, F%, My) 
The steady-state dynamics are determined by 

0 = -WQ - mgsxnBi - 2g.fr sin(^/2) sin02cos^(0g - $) (3.30) 

0 = UQ + mgcos01 - 2qf4>sm(A4>/2) cos02(4>i - $) (3.31) 

0 = 2qU (x2/i sin(iV2) - y3/2^sin^2) cos02(02 - $). (3.32) 

For any given steady values #1 ,U,W,Q the equilibrium control inputs are 

, /2x2/ism(A<*/2)\ 

*--   (    \ln     ) <333) 

»,^-( ,ZQ+maT 1) <3M> \—UQ - mgcosoi cosip2J 
-UQ-mgCQS0! 

2qUSm(At/2)cos62' 
l^Dj 

To determine a unique set of control inputs, it is assumed that the flapping frequency, /^, and 
amplitude, A<p, is kept constant. From this specification, it follows that 

A*UJ4 ~ J>2<t>2 + A<t,U4>2 = 0. (3.36) 

Since both 4>2 and ^ are positive valued, it must be that §\ > A^fy; for simplicity, denote 

*«, == hd
2 ~ $• (3.37) 

An important subset of steady-state flight is the hovering mode where U = W = Q = 0.   For a 
given pitch angle, 6\, the steady actuation requirements are given by 

-1 /—tan d\ \ 
62 = tan  M -i- 3.38 

V cos% / 
. /2a;2/isin(A<*/2)\ 

*-*•  ( \L    ) (339) 
mg cos B\ 

2q/^sin(v4^/2)cos6>2 

where apparently ip2 and 92 must be non-zero. 
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3.5    Optimal landing trajectories. 

The purpose of this section is to determine a trajectory that takes the vehicle body from one point 
to another, with the stipulation that the ending velocity is zero. The ending point is considered 
fixed; but the initial conditions, the trajectory, and the duration are all open for analysis. There 
are obviously infinite number of trajectories that take the vehicle from point A to point B while 
meeting the stipulated requirements. However, generally speaking, this should be accomplished 
with as little "effort" as possible. This consideration leads to optimization problems, the solution 
of which will specify both trajectories and, as a result, the forcing requirements. 

Optimal trajectories are derived based on the planar inertial equations 

Fx = mx (3.41) 

Fz-mg = mz (3.42) 

My = Iy0i (3.43) 

where (x,-y,-z) = [Ri}0, (Fx,Fy,Fz) = [fa]0, and (Mx,-Mv,-Me) = [ma]0. The forces Fx, Fz, 
and moment, My are inertial representations. The conversions are [fa]i = Cio[fa]o and [ma]i = 
Cio[ma]o- Given the longitudinal assumptions, the relationships are given by 

Tx = Fx cos 6-Fz sin 6 (3.44) 

Tz = -Fx sin 9-Fz cos 6 (3.45) 

My = -My. (3.46) 

The objective is to determine the trajectory x(t), y(t), and 6(t), subject to x(tf) = y(tf) = 6(tf) = 
0, that minimizes a specified performance index. Extremum of a prescribed functional 

J =      g(x, x, t) dt 
Jo 

are determined by a solution to Euler's equation 

d /dg\     dg 
dt \&kj     <9x 

Given the optimal trajectory, the forces and moments are related to the wing kinematics by 

^2 = sin   l~W A^FT) (3-47) 

2q/0Sin(^/2)cos6'2 

where T% / 0. 
Since the forces are considered independent, the minimization of Fx, Fz, My can be performed 

independently. The functions to be minimized are 

1*1 
Jx=        {Fx/mf dt (3.50) 

Jto 

Jz=        (Fz/m)2 dt (3.51) 
Jto 

Jm   =     / (My/Iyf   dt. (3.52) 
Jto 
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The application of Euler's equation results in x, z, and 9 being constant. With the conditions 
x(0) = y(0) = 9(0) = 0, and x(tf) = z(tj) = 8 = 0, it follows that the optimal trajectories are 
given by 

f ~|(f )<<+(-]«, (3.54, 

where x/ := x(tf), XQ := x(0), etc. Each of the trajectories is coupled by the ending time per 

t, = ^ = ^ = St. (3.56) 
x0        2:0        6»o 

Hence, the trajectories can also be written 

x(t) = -x/(r2 - 2r) (3.57) 

x(£) = -Z/(T
2
 - 2r) (3.58) 

6»(t) = -6>/(r2-2r), (3.59) 

where r := t/tf. The planar trajectory can also be expressed in the form 

in 
z{x) = -^-x, (3.60) 

#o 
which indicates a linear path. The path is either ascending or descending depending on the sign of 
ZQ. The corresponding forces required for this trajectory are 

^x = ~\m^ = -2mU (3.61) 
2    Xf tj 

1 z2 Zf 
Fz = --m-2- + mg = -2m-f- + mg (3.62) 

2 2/ ty 

My = -^| = "2/^- (3-63) 

The required inertial forces and moment are thus constant. The fixed body frame forces are found 
by Eqs. (3.44-3.46). 

The forces and moment required to produce the optimal trajectory is substantially dependent on 
the ratios XQ/XJ and ZQ/Z/. Recall, that an important approximation in deriving the aerodynamic 
forces and moment is that \x(t)\ and \z(t)\ are "small" relative to the wing motion. The wing 
kinematics required to produce these forces can be computed by Eqs. (3.46-48). 

4    Landing control. 

The flight control problem for flapping wing MAV's has been addressed in several works [10]. Since 
the flapping motion of the wings The consensus approach. This section details control methods 
that are suited for the attachment landing problem. These techniques are applied in the numerical 
example of Sec. 5. Since the longitudinal dynamics are significantly nonlinear, due to multiplicative 
and trigonometric terms, the focus here is on methods of nonlinear control. 
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4.1    Control model. 

To construct a state-space model of the dynamics, define the state vector 

and the control vector 

x   z   6   U   W   Q 

u= [ e2 ^2 $ti 

Noting the inertial position dynamics 

x = U cos 0 — W sin 0 

z = -Usm0-Wcos6 

*i = -Q, 

the average state dynamics (cf. Sec. 4.2) are of the form 

*(t) = /(x) + 0(u), 

where 

/(*) = 

UcosGi -W sin 0i 
-C/sin0i-Wcos0! 

-Q 
-WQjra — g sin 0i 
UQ/m + g cos 0i 

0 

and 

g(u) =[000   rx/m   fz/m   My/Iy } . 

From Eqs. (3.24-26), the forces and moment are related to the control input by 

Tx = -2q^sm{A$l2)svn.B2cosi>2§w 

Tx = -2qf<t> sin(A^/2) sin 02 cos V>2$to 

My = 2qf4> [x2/lsm(A4,/2) - 0.5^j/3/2 sin tp2] c62$w. 

To produce a linear form of the model, let 

Ax = x — xo 

Au = u - UQ 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where xo is an equilibrium point of Eq.   (4.5), and Uo is the corresponding equilibrium control 
input. The equilibrium points of interest are those of hovering flight, i.e., 

x0 = [ 0   0   0?   0   0   0 ]: 

uo=[02°   V2°   <^]T- 

(4.10) 

(4.11) 
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The linearized dynamics are then 

Ax(t) = AAx(t) + BAu(i) (4.12) 

where 

and 

0 0 -Us6\ - Wc0? C0? -s8\ 0 
t) 0 -Uc6\ + Ws6\ -S0° -c6\ 0 

0 0 0 0 0 -1 

0 0 -gcB\ 0 -Q/m   -W/m 
0 -gs6\ Q/m 0 0 U/m 
0 0 0 0 0 0 

' 0 0 0     0 0 0   " 
0 0 0    0 0 0 
0 0 0    0 0 0 

B = 2qf<t>sm(A<t,/2) 
0 0 0   644 &45 he J 

0 0 0   b5i &58 &56 
L 0 0 0    664 &65 &66  . 

(4.13) 

(4.14) 

where 

644 = -cO^^l/m 

b45 = sOls^l/m 

646 = — sO^op^/171 

654 = s6%$°w/m 

b55=0 

he = -c0°/m 

hi = (O.5A03/2stp2/ sin(A^,/2) - x2/1)/Iy 

665 = -0.5^y3/2cfl§c^§<(sm(^/2)JB) 

he = (O.5^t/3/2s^/sin(A0/2) -x2/i)c^//y. 

The linear model if, of course, primarily useful when the states are kept to within a sufficient mag- 
nitude of the origin. All of the standard techniques of linear multivariable control are then available 
for consideration. For the present case, it is necessary that x, z, and 6\ are varied over a large 
distance. Extensional linear techniques such as gain scheduling (Rugh, 1990), and simultaneous 
optimal control (Al-Sunni and Lewis, 1993), are available in these circumstances. Alternatively, 
under certain conditions on the structure of the equations of motion, several nonlinear techniques 
are available. The following two sections apply two of these methods, feedback linearization and 
backstepping, to the flapping control problem. 

4.2    Feedback linearization. 

Following the standard approach [cite], define the output vector 

r n    -iT (4.15) 

is 



and the control vector 

' =    [   TX        TZ        My 

Taking the second derivative of the output results in 

x = -Wcos6(1+ Q/m) - 2gsin0i cos0X - [/sin0i(l + Q/m) 

+ cos6\fx/m — smOxTz/m 

z = Wsm6i(l + Q/m)+g{sin2 0i - cos2 0i) - *7cos0i(l + Q/m) 

— sin OiTx/m — cos B\Tz/m 

01   =   -My/Iy. 

This can be expressed in the form 

where 

y(t) = /(y,y) + Go(y,y)P, 

/(y,y) = 
-W cos 0(1 + Q/m) - 25fsin0icos0i - C/sin0i(l + Q/m) 

Wsin0!(l + Q/m) + g(sin2 0X - cos2 0i) - C/cos0i(l + Q/n 
0 

m) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Go(y,y) 
cos 0i /m     —sin 0i/m        0 

— sin 0i/m   —cos 0i/m       0 
0 0 -1/I„ 

Define the tracking error 

e = y-r, 

where r is the reference input. The force input is then defined as 

3n' I-/ - Kie(t) - Kae(t) + K3 / e(t) rfr + r(t)) 

(4.21) 

(4.22) 

(4.23) 

where Ki, K2, and K3 are diagonal matrices with positive elements. The error dynamics become 

e(t) = -Kie(t) - K2e(t) - K3 / e(t) dr, 
Jo 

which are clearly exponentially stable. The control inputs are found by 

u = gc(F) 

where by Eqs. (3.47-49) 

(4.24) 

(4.25) 

gc = 

•   -1 (2x2/1sm(A^/2) _ 27W;sin(^^/2)\ 

tan" if   n   \ 
\ T%cosil>2 I 

2qf4,sm(A4,/2) cos02 

(4.26) 
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4.3    Backstepping. 

The dynamics are divided into two parts: 

rj = f(v) + G£ (4.27) 

C = /.fa,0 + G.F, (4.28) 

and £ = {U,V,Q); thus 

/(if)=[0   o  o]T (4.29) 

fa(v)= [ (-WQ/m-gsmO!)    (UQ/m+gcosBi)   0 }T (4.30) 

G = 
cos 0\      — sin 9\     0 

— sin#i    — cos^i     0 
0              0         -1 _ 

(4.31) 

Ga = 
" 1/m      0         0    ' 

0      1/m      0 
0                   0              l/Iy 

(4.32) 

Define the function 

<p = G1 (-Kie(t) - K2 I e(r) dr\ , (4.33) 

where Ki and K2 are diagonal matrices with positive terms; it is noted that G  1 = G. Also, define 
the Lyapunov function 

It can be shown (see Sec. 14.4 of [cite]) that the input 

F = Gr1 gc/+<*,-(£)  -/.-»«-•, 

(4.34) 

(4.35) 

exponentially stabilizes the system of Eqs. (4.27,28). As before, the control inputs u are found 
from Eqs. (4.25,26). 

5    Numerical example. 

The preceding sections provide the analytical framework for evaluating the attachment landing 
requirements and methods of nonlinear control for a napping wing MAV. The purpose of this 
section is to demonstrate the application of these results with a numerical example, which is based 
on the a hypothetical vehicle design, resembling the general planform properties of the bunblebee 
(Dudley and Ellington, 1990); a dynamic flight analysis based on the parameters of this study was 
conducted by Sun and Xiong (2005). The baseline design parameters are given in Table 1. 
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Table 1. Flapping vehicle parameters. 
Mass m = 175 x 10"6 kg 
Air density p = 1.25kg-m3 

Wing reference area 5 = 53 x 1CT6 m2 

Moment of inertia Iy = 0.213 x 10"8 kg-m2 

Flapping amplitude A/, = 116° 
Flapping frequency U = 155 Hz 
z-distance to wing-root o?2/i = 3.91 mm 
distance to cop y3/2 = 7.26 mm 

While, as previously discussed in Sec. 4, the control algorithms are based on the average dynam- 
ics, subsequent numerical simulations are conducted using the non-averaged dynamic model. The 
basic structure of the simulation model is shown in Fig. 2. 

5.1 Optimal landing trajectories. 

The landing requirements are calculated based on the optimal trajectory analysis of Sec. 3.5. For 
this example, the landing point is taken to be at x — 0.1 and z = 0.05 m, and the desired pitch angle 
is 6\ = —70° (note the negative angle denote a pitch angle directed toward the sky, not the ground). 
Also, the initial angular rotation rate is set to Q\ = 0.01 deg/s. The resulting actuation requirements 
for varying landing times, tf, are shown in Fig. 3. As expected the actuation requirements increase 
as the landing time becomes smaller. It is important to note that these trajectories represent open- 
loop performance based on the averaged dynamics. Thus, while these trajectories are theoretically 
achievable, it may be difficult to achieve the same performance in feedback control for the non- 
averaged system. 

5.2 Hovering flight. 

One of the primary requirements of attachment landing is the ability to hover at a large pitch angle. 
For example, consider a constant hover angle of 9\ = —70°, in which case the A and B matrices of 
Eq. (4.13,14) are 

0   0 0 0.3420 0.9397 0    " 
0   0 0 0.9397 -0.3420 0 
0   0 0 0 0 -1.0 
0   0- 3.3552 0 0 0 ) 

0   0     9.2184 0 0 0 
0   0 0 0 0 0 

0 0 0 - 

0 0 0 
0 0 0 

-2.9922 5.5561 x 10~3 4.18879 > - 10"5 

10.3369 0 -3.9861 x 10"3 

0 -2.1237 x 103 0 

The eigenvalues of the A matrix are all zero. This is the case for any hovering equilibrium (although 
inclusion of a pitch damping term results in a negative real valued eigenvalue). Hence, the open-loop 
system is unstable, and must be stabilized by feedback. 
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The demonstrate the the basic hovering performance with classical control techniques, a standard 
linear quadratic regulator optimal control (LQR) is applied based on the performance index 

J = / (AxTQAx + AuTRAu) dr. (5.1) 
Jo 

After some iteration, the following matrices were chosen: 

Q = diag[l, 1,0.2,0,0,0],    R = 0.5I3. (5.2) 

Here diag[-] denotes a diagonal matrix, and I3 is a 3 x 3 identity matrix. The hovering performance 
is shown in Figs. 4a,b for an initial pitch angle of 6\ = 0. The results show that the linear 
controller achieves a bounded response. The performance can likely improved with some form of 
integral control. However, the LQR controller was found insufficient for stabilizing the vehicle at 
even small pitch angles. This is attributable to relatively large values of U, W, and Q, which are 
assumed small in the linear approximation. 

5.3    Landing control. 

The landing sequence is divided into two parts: (1) an orientation phase where the pitch angle is 
brought to a large angle, while attempting to regulate the linear motion; and (2) a terminal landing 
phase where the pitch angle is kept small and the vehicle is brought forward to its target landing 
position. The vehicle is initially set at a zero pitch angle and at at distance of 100 mm from its 
landing target. The desired reference pitch angle for the initial orientation phase is set at 70°. For 
the following simulations, x2/\ is set to zero. This was found to produce the best performance, 
likely due to the uncoupling between the moment, My, and the vertical force Tz. 

For the feedback linearization method of Sec. 4.3, the gain matrices of Eq. (4.24) are specified 
as 

Ki = diag[100,100,4x 10-4] 

K2 = diag[20,20,0.4] 

K3=diag[10,10,0.1]. 

These were chosen based on numerous iterations. Generally, it was found that the desired pitching 
rate must be kept relatively small to maintain a reasonable response of x and z (within 10 mm 
of the origin). Specifically, for the particular vehicle under consideration, it was found that the 
inital phase must be in excess of 300 seconds. Alternatively, x and z motions can be tracked 
relatively quickly. The numerical simulation of the the two-part landing sequence is shown Fig. 
5a; the corresponding control input is shown in Fig. 5b. Once a pitch angle of 70° is achieved 
at approximately 360 seconds, a forward x command of 100 mm is initiated, which is achieved in 
approximately 5 seconds. The terminal phase of the landing is shown in Fig. 5c. 

For the backstepping method of Sec. 4.3, the gain matrices of Eq. (4.32) are specified as 

Ki =diag[100,100,4x 10-4] 

K2 =diag[10,10,l]. 

The two-part landing sequence is shown in Figs. 6a, with corresponding control inputs shown in 
Fig. 6b. 
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6    Conclusions. 

It was shown that three-degree-of freedom actuation scheme is sufficient for the attachment landing 
problem. These degrees of freedoms are (i) variation of of down-stroke and up-stroke flapping 
velocity; (ii) rotation of the wing at its root attachment point; and (iii) wing sweep. The rotation 
of the wing is especially crucial for hovering at a large pitch angle. Also, a large wing rotation 
is required when the desired landing trajectory is "fast". Control techniques were studied using 
a full non-averaged, nonlinear numerical simulation. Methods of linear control were found to be 
unsuitable for the attachment landing problem; a demonstration of this was shown with a standard 
LQR method for stabilizing hovering dynamics. The nonlinear methods feedback linearization and 
backstepping were shown to be suitable for landing control. The application of these methods led 
to a two part landing sequence, the first part of which is a large pitch rotation. This maneuver 
was found to be significantly unstable, and could not be performed quickly. The second part of the 
landing sequence is a forward motion (at a high pitch angle), until wall contact is achieved. This 
maneuver was found to be significantly more stable, and could be performed with a faster settling 
time. 
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8    Appendix - Notation 

A physical vector a observed from two reference frames, frame ^b with orthonormal unit vectors 
(iojojko), and 3&\ with orthonormal unit vectors (ii,ji,ki), can be expressed as 

a = axio + ayjo + azko 

or 

a = a'xii + a'yji + a'zk\ 

where, in general, ax ^ a'x, ay ^ a'y, az ^ a'z. We will refer to the axes of frame ^ by it components 
Xi, yt, and zt. 

The matrix representation of the vector a, expressed in the frame &$, is denoted 

[a]o 

Similarly, the 3$\ frame representation of a is denoted 

l*i = 

In general, a symbol representing a matrix will be written without the brackets. However, when 
it is necessary to identify the matrix as a vector representation, we will use the bracket notation 
[ • )i where i denotes the corresponding reference frame. In general, we say that [a], is the ^ 
representation of a. 

The matrix [a]o is converted into the matrix [a]j by the operation 

[a]i =Cio[a]0 

where C\Q is a transformation matrix which coverts vector representations in &$ into vector rep- 
resentations in 8£\. The form of this matrix is dependent on the specific manner in which rotation 
is parameterized (i.e., Euler angles, Euler parameters, etc.). When dealing with right-handed or- 
thonormal basis vectors, this transformation matrix has the useful property 

^10  = ClO := Coi 

That is, its inverse is equal to its transpose (i.e., it is unitary). 
The time derivative of [a]i is 

A([a]i) = A(Cio)[a]0 + CioA([a]o) 

where the time derivative is denoted Dt(-) = d/dt(-); similarly, we write Du(-) = d2/dt2(-). Pois- 
son's equation provides the relation 

A(Cio) = -[^l/oliCio 
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where u>i/o is the angular velocity vector that quantifies the rotational motion of 8£\ with respect 
to &Q.   The symbol (*) denotes the skew symmetric representation of the vector.   That is, if 

[«i/o]i := [P Q R]T then 

w ,/o]i 

0 -R Q ' 
R 0 -p 
Q r 0 

Since C\o is an orthonormal operator, we also have 

A(Coi) = Cbifu^/o]* 

Thus, the time derivative becomes of [a]i becomes 

A([a]i) = -[«1/0]iCio[a]o + CioA([a]o) 

or 

A([a]o) = Coi[wi/0]![a]i + CoiA(Wi) 

The second derivative follows in the same manner. 

9    Figures. 

Fig. 1. Flapping wing kinematics. 

Fig. 2. Simulation model schematic. 

Fig. 3. Actuation requirements. 

Fig. 4a. LQR hovering control. 

Fig. 4b. Actuation inputs for LQR hovering control. 

Fig. 5a. Feedback linearization control. 

Fig. 5b. Actuation requirements for feedback linearization control. 

Fig. 5c. Terminal landing phase for feedback linearization control. 

Fig. 6a. Backstepping control. 

Fig. 6b. Actuation requirements for backstepping control. 
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Fig. 2. Simulation model schematic. 
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